ANALYSIS III BACKPAPER EXAMINATION

Total marks: 100

- (1) What is the equation of the tangent plane at any point (a, b, c) of the sphere $x^2 + y^2 + z^2 = 1$ in \mathbb{R}^3 ? (10 marks)
- (2) Determine the points of \mathbb{R} around which the sine function has a smooth local inverse function. What is the derivative of the inverse function (when it exists)? (10 marks)
- (3) Let $f: [0,1] \times [0,1] \to \mathbb{R}$ be the function defined by $f(x,y) = \frac{1}{q}$ if y is rational and if $x = \frac{p}{q}$, where p, q are positive integers without common factors; let f(x,y) = 0 otherwise. Show that $\int_{[0,1]\times[0,1]} f$ exists. Verify Fubini's theorem for f. (10+10=20 marks)
- (4) Compute the area of the torus described the parametrization:

 $r(u, v) = ((a + b\cos(u))\sin(v), (a + b\cos(u))\cos(v), b\sin(u))$

where 0 < b < a and $0 \le u \le 2\pi$, $0 \le v \le 2\pi$. (20 marks)

- (5) Use Stokes theorem to prove $\int_C y dx + z dy + x dz = \pi a^2 \sqrt{3}$, where C is the curve of intersection of the sphere $x^2 + y^2 + z^2 = a^2$ and the plane x + y + z = 0. Also explain how to traverse C to arrive at the given answer. (20 marks)
- (6) Let V be the solid cylinder $x^2 + y^2 = 1$ and $-1 \le z \le 1$. Let S be the boundary of V, let n be the unit outward normal vector on points of S. Let F(x, y, z) = (z, y, x). Verify Gauss's divergence theorem by computing both sides. (10+10=20 marks)